Porting Kitchen to Python3: Part 1 — Detecting string types

I’ve spent a good part of the last week working on the python3 port of kitchen. It’s now to the point where I’ve reviewed all of the code and got the unittests passing. I still need to add some deprecation warnings and a gettext object that mirrors the python3 API instead of the python2 API. Then it’ll be ready for an alpha release. Still a lot of work to do before a final release. Most of the documentation will need to be updated to change from unicode + str to str + bytes and the best practices sections will need a major overhaul since a lot of the problems with python2 and unicode have either been fixed, mitigated, or moved to a different level.

It was both an easy and hard undertaking. The easy part was that kitchen is largely a collection of dependent but unrelated functions. So it’s reasonably easy to pick a set of functions, figure out that they don’t depend on anything else in kitchen, and then port them one by one.

The hard part is that a lot of those functions deal with things that are explicitly unicode and things that are explicitly byte strings; an area that has both changed dramatically in python3 and that 2to3 doesn’t handle very well. Here’s a couple of things I ended up doing to help out:

Detecting String Types

Kitchen has several places that need to know whether an object it’s been given is a byte string, unicode string, or a generic string. The python2 idioms for this are:

if isinstance(obj, basestring):
    pass # object is any of the string types
    if isinstance(obj, str):
        pass # object is a byte string
    elif isinstance(obj, unicode):
        pass # object is a unicode string
else:
    pass # object was not a string type

In python3, a couple things have changed.

  • There’s no longer a basestring type as byte strings and unicode strings are no longer meant to be related types.
  • Byte strings now have an immutable (bytes) and mutable (bytearray) type.

With these changes, the python3 idioms equivalent to the python2 ones look something like this:

if isinstance(obj, str) or isinstance(obj, bytes) or isinstance(obj, bytearray):
    pass # any string type
    if isinstance(obj, bytes) or isinstance(obj, bytearray):
        pass # byte string
    elif isinstance(obj, str):
        pass # unicode string

There’s two issues with these changes:

  • code that needs to do this needs to be manually ported when moving from python2 to python3. 2to3 can correctly change all occurrences of isinstance(obj, unicode) to isinstance(obj, str) but occurrences of isinstance(obj, basestring) and isinstance(obj, str) will also be rendered as isinstance(obj, str) in the 2to3 output. This is correct for a lot of normal python2 code that is trying to separate strings from ints, floats, or other types but it is incorrect for code that’s trying to explicitly separate bytes from unicode. So you’ll need to hand-audit and fix your code wherever these idioms are being used.
  • This is more prolix and tedious to write than the python2 version and if your code has to do this sort of differentiation in many places you’ll soon get bored of it.

For kitchen, I added a few helper functions into kitchen.text.misc that encapsulate the python2 and python3 idioms. For instance:

def isbasestring(obj):
    if isinstance(obj, str) or isinstance(obj, bytes) or isinstance(obj, bytearray):
        return True
    return False

and similar for isunicodestring() and isbytestring(). [In case you're curious, I broke with PEP8 style for these function names because of the long history of is* functions and methods in python and other programming languages.] By pushing these into functions, I can use if isbasetring(obj): on both python2 and python3. I only have to change the implementation of the is*string() functions in a single place when porting from python2 to python3.

Now let’s mention some of the caveats to using this:

  • In python, calling a function (isbasestring()) is somewhat expensive. So if you use this in any hot inner loops, you may want to benchmark with the function and with the expanded version to see whether you take a noticable loss of speed.
  • Not every piece of code is going to want to define “string” in the same way. For instance, bytearrays are mutable so maybe your code shouldn’t include those with the “normal” string types.
  • Maybe your code can be changed to only deal with unicode strings (str). In python3 byte strings are not as ubiquitous as they were in python2 so maybe your code can be changed to stop checking for the type of the object altogether or reduced to a single isinstance(obj, str). The language has evolved so when possible, evolve your code to adapt as well.

Next time: Literals

My first python3 script

I’ve been hacking on other people’s python3 code for a while doing porting and bugfixes but so far my own code has been tied to python2 because of dependencies. Yesterday I ported my first personal script from python2 to python3. This was just a simple, one file script that hacks together a way to track how long my kids are using the computer and log them off after they’ve hit a quota. The kind of thing that many a home sysadmin has probably hacked together to automate just a little bit of their routine. For that use, it seemed very straightforward to make the switch. There were only three changes in the language that I encountered when making the transition:

  • octal values. I use octal for setting file permissions. The syntax for octal values has changed from "0755" to "0o755"
  • exception catching. No longer can you do: except Exception, exc. The new syntax is: except Exception as exc.
  • print function. In python2, print is a keyword so you do this: print 'hello world'. In python3, it’s a function so you write it this way: print('hello world')
  • The strict separation of bytes and string types. Required me to specify that one subprocess function should return string instead of bytes to me

When I’ve worked on porting libraries that needed to maintain some form of compat between python2 (older versions… no nice shiny python-2.7 for you!) and python3 these concerns were harder to address as there needed to be two versions of the code (usually, maintained via automatic build-time invocation of 2to3). With this application/script, throwing out python2 compatibility was possible so switching over was just a matter of getting an error when the code executed and switching the syntax over.

This script also didn’t use any modules that had either not ported, been dropped, or been restructured in the switch from python2 to python3. Unlike my day job where urllib’s restructuring would affect many of the things that we’ve written and lack of ported third-party libraries would prevent even more things from being ported, this script (and many other of my simple-home-use scripts) didn’t require any changes due to library changes.

Verdict? Within these constraints, porting to python3 was as painless as porting between some python2.x releases has been. I don’t see any reason I won’t use python3 for new programming tasks like this. I’ll probably port other existing scripts as I need to enhance them.